
Terrain and Behavior Modeling for Projecting
Multistage Cyber Attacks

Daniel Fava† Jared Holsopple‡ Shanchieh Jay Yang† Brian Argauer†

† Department of Computer Engineering ‡ Information Fusion Division
Rochester Institute of Technology Calspan-UB Research Center

Rochester, New York, U.S.A Buffalo, New York, U.S.A

Abstract— Contributions from the information fusion com-
munity have enabled comprehensible traces of intrusion alerts
occurring on computer networks. Traced or tracked cyber
attacks are the bases for threat projection in this work. Due
to its complexity, we separate threat projection into two sub-
tasks: predicting likely next targets and predicting attacker
behavior. A virtual cyber terrain is proposed for identifying
likely targets. Overlaying traced alerts onto the cyber terrain
reveals exposed vulnerabilities, services, and hosts. Meanwhile,
a novel attempt to extract cyber attack behavior is discussed.
Leveraging traditional work on prediction and compression, this
work identifies behavior patterns from traced cyber attack data.
The extracted behavior patterns are expected to further refine
projections deduced from the cyber terrain.

Keywords: prediction, cyber security, contextual reasoning

I. INTRODUCTION

The task of assessing cyber attacks has drawn increasing
attention from the information fusion community. Drawing
analogies from traditional fusion problems, assessing cyber
attacks involves detecting, tracking, correlating, and project-
ing attack movements. Malicious activity on computer net-
works triggers Intrusion Detection Systems (IDSs) to produce
alerts. Each attack action may trigger zero, one, or many
alert messages. Correlating and filtering alert messages, i.e.,
observables, provide traces or tracks of ongoing multistage
attacks in a computer network. Precise and timely predictions
shall lead to better decision making and minimal operational
interruptions when combating cyber attacks. Therefore, the
focus of this paper is on projecting the movements of tracked
cyber attacks.

Projecting cyber attack actions depends on the detection
and tracking of malicious activity. Host-based and network-
based IDSs typically monitor application and operating system
level activity as well as network traffic. Alerts are generated
when monitored activity matches one or more signatures of
previously known attacks (signature-based) or is abnormal
and suspicious (anomaly-based). Non-intrusive and intrusive
malicious activity detection has been widely tackled yet still
continuously poses challenges, due to the constantly evolv-
ing nature of vulnerabilities and, consequently, changes in
exploitation mechanisms. As a result, alert messages produced
by IDSs may be incomplete and misleading.

In 2000, Bass [1] advocated the need of information fusion

when facing overwhelming number of alerts reported on
typical enterprise networks. Since then, much work has been
devoted to alert correlation, e.g., [2]–[10]. Correlating IDS
alerts involves reasoning based on, primarily, the source and
target IP addresses, the attack type descriptions from the alert
messages, and the time interval between alerts. This set of
information helps revealing the courses of action potentially
taken by multistage attacks, which may span over multiple
machines or subnets. Alerts that belong to the same course of
action are grouped and traced to form an attack track. Each
attack track, which may be modeled as a directed graph, il-
lustrates the causal and sequential relationships between alerts
belonging to the same multistage attack. Note that undetected
activity and excessive alerts (typically due to reconnaissance
activity) may lead to mis-correlated alerts or fragmented attack
tracks.

While alert correlation is still under investigation for better
accuracy and real-time operation, the next challenge is to
project attack actions based on the detected attack tracks.
Cyber attack projection may be categorized as a L3 fusion
problem based on the Joint Directors of Laboratories (JDL)
fusion model [11], [12] and its revision in 2004 [13]. The
challenge of projecting attack actions comes from the fact
that cyber attacks are diverse and constantly changing in
terms of not only intents and exploitation methods, but also
network and system configurations. Common approaches in
assessing courses of actions (not necessary for cyber attacks)
include Bayesian Network and Hidden Markov Models. In the
cyber domain, much work has been focused on assessing the
sequence over which system vulnerabilities may be exploited
in a network, e.g., [14]–[16]. Qin and Lee [17] proposed to
adapt attack plan model using Bayesian Network as attack
actions are detected. Though theoretically sound, one problem
in these approaches is the complexity involved in developing
and/or maintaining the models for courses of actions, which
encompass the diverse exploitation methods, intents, and net-
work configurations. Holsopple, Yang, and Sudit [18] proposed
to simplify the problem by separating the modeling of network
configuration and cyber attack methods. As attack actions are
detected, assessments are performed independently using the
two predetermined models. The assessments are then fused to
determine the targeted entities (intents of the attacks) in the
network.

This work extends the concept of separating the modeling
of network and system configuration from the extraction of
attack behavior. In Section II, we investigate which critical
information of a computer network is necessary for threat
prediction, and whether this information can be obtained and
updated automatically. We propose a virtual cyber terrain that
models the accessibility or exposure of system vulnerabilities
at different network access domains. The cyber terrain model
is not goal-oriented like a typical vulnerability tree, nor does it
utilize probabilities such as a Bayesian network. It is a directed
graph containing critical topological and system configuration
information for situation and threat assessment caused by
cyber attacks.

In Section III, we attempt to extract patterns from traced
cyber attack actions. Note that behavior is influenced by the
attacker’s intent, his or her preferred exploit sequences and
capabilities, and the network and system vulnerability exposed
to the attacker. General perception is that cyber attack behavior
can be diverse and changing. We conduct experiments using
traced ground truth data that do not contain exploit evolution,
i.e., there is a finite set of attack types. We leverage traditional
work on prediction, which has a significant overlap with the
study of data compression [19]. A customized suffix tree is
developed to examine what trends, if any, may exist in the
types of attacks an attacker may choose to execute.

Cyber terrain, which determines vulnerabilities and possibly
exposed targets, along with behavior extraction may provide
efficient and accurate projection of cyber threats. The next two
sections illustrate the proposed cyber terrain and our findings
on the behavior extraction experiments.

II. CONTEXTUAL REASONING VIA CYBER TERRAIN

MODELING

A reasonably secured network typically has multiple access
domains, where direct access to internal and often critical
domains or subnets is prohibited. Serious cyber attacks, thus,
need to exploit different system vulnerabilities and progress
through multiple domains. Reasoning on the progress made
by a cyber attack shall benefit from a contextual model - a
virtual cyber terrain that models the logical accessibility from
one access domain to another. Most importantly, the cyber
terrain should model the system and network configurations,
including their vulnerabilities that may be exposed as the
attacker compromised one or more systems in the network.

Vidalis and Jones [15] proposed the use of a vulnerability
tree to identify the types of attacks an attacker could per-
form to accomplish a goal. Their model requires a separate
vulnerability tree for each possible goal, which could be
potentially numerous. Philips and Swiler [14] and Liu and
Man [16] suggested the use of a Bayesian network to model
the vulnerabilities. Their model assumes acyclic graphs, which
implies that bi-directional connections between hosts must
be modeled in separate acyclic graphs. Massicote et. al.
[20] discussed ways of introducing contextual information
to cross examine with reported IDS alerts and, thus, reduce
false positives. Their experiences suggested that contextual

information may be derived by utilizing Snort [21], Nessus
[22] and Bugtraq [23]. Our model, developed independently
of Massicote’s work, shares some similar ideas, yet provides
additional network connectivity and privilege information for
situational assessment and threat prediction.

A. Cyber Terrain Definition

We model a cyber terrain as a directed graph consisting
of host or cluster nodes that are interconnected with directed
arcs. Both the nodes and arcs have attributes defined for threat
assessment and projection. Each node in the cyber terrain
contains the following attributes:

• A node identifier
• IP address(es) (and host name(s) if applicable)
• Service and data criticality metrics
• Service Tree(s)
Note that a single node may have multiple IP addresses to

define a cluster of identically configured hosts or servers. This
simplifies the terrain model as well as the impact assessment
process. The service and data criticality metrics are numerical
numbers between 0 and 1, defining the importance of services
provided by the node and data content stored in the node,
respectively. A value of 0 means that the node is irrelevant,
whereas a value of 1 corresponds to a host or cluster that
contains most valuable content or most critical to network
operation. Note that both criticality measures may be defined
by the network analyst and/or referencing to databases such as
CVE [24]. A thorough study of how criticality may be defined
to better assess the consequences of cyber attacks is needed.
This work focuses on ‘projecting’ cyber attack actions and
assumes that the numerical values are given.

Each node may have one or more services running; here
we define service in a general term that includes both remote
services and local user applications. A service tree is used
to represent each service available in the node. At the terrain
model development phase, all running services will be scanned
by tools to determine the open ports and vulnerabilities of
each machine. This information then can be used to build the
service trees in each machine. To build these trees, one or
more databases must be cross-referenced to determine which
exposures and exploits should be mapped to each version of
the running services. As also suggested by Massicote et. al.
[20], we adopt Snort [21], Bugtraq [23], Nessus [22], and
NMAP [25] to build a service database that will aid the
creation of a service tree. The service tree will capture the
name of the service, versions of that service that are running,
and the IDS alerts that could be reported if the corresponding
vulnerabilities were exploited. An example template of a
service tree is shown in Figure 1.

A key feature of the service tree model presented here
is that it captures privilege differences between services and
between versions of the same service. Like regular users, every
service runs at a given privilege level. While many services
do run at the system level, other services can only run at the
user level. If a service is exploited, the attacker usually gains
access to the computer at the level of the service. The service

Fig. 1. An example service tree template with the privilege shown in
parentheses, where an asterisk (*) implies that the privilege was inherited
from the parent.

database contains a default privilege for every service. Should
the administrator change the privilege of the service, the terrain
will be updated accordingly. In addition, services may be local
or remote. A remote service can be possibly compromised
without obtaining access privilege to the computer hosting the
service. Such services typically listen on a specified TCP/UDP
port. A local service is a service that can only be exploited
after the attacker gains access to the computer hosting the
service.

The version(s) of each service are on the second level of
the tree. It is possible that multiple versions of the same
service could be running on the same host. For example, a
web programmer may wish to run multiple versions of Mozilla
Firefox concurrently to test for the compatibility of a web
site between different versions. Some vulnerabilities could be
fixed or introduced from version to version. Also, a specific
version may also have a privilege different from that of its
parent service. Therefore, our model allows the privilege to be
defined explicitly for each version of each service. By default,
if no privilege is defined, a version will inherit the privilege
of its parent service.

The actual IDS alerts are the children of the versions. The
IDS alerts classified under a service and version imply that if
an IDS alert was reported on that host, the parent version of
the service is affected by that alert. Like versions, these IDS
alerts can also inherit the privilege level of its parent. Some
IDS alerts may not correspond to actual vulnerability exploits.
For example, knowledge discovery attack such as a TCP Syn
attack may indicate that the target host is alive, but will not
compromise any privileges to the host. Such alerts are defined
with a ‘None’ privilege.

The service trees provide a structural model to determine the
extent to which services are compromised on each host. More
specifically, it helps to determine the privilege(s) obtained by
the attacker during the process of an attack. It also filters out
false positives, i.e., alerts that do not correspond to a service
running on the target host or subnet. Furthermore, and perhaps
more importantly, by correlating the services and privileges in
different machines, the cyber terrain may be used to deduce
potentially threatened targets with similar or the same running
services. Inference using the services, however, depends on
the connectivity allowed between hosts and subnets. This

connectivity is defined by the arcs in the cyber terrain model. A
simplified example of a cyber terrain model is shown in Figure
2 for illustration purposes. The model has only three nodes
interconnected with attributed directed arcs. A more realistic
model may contain many more nodes and each service tree
may be associated with tens or hundreds of IDS alerts.

In analyzing the progression of cyber attacks, the physical
topology of the network is not entirely relevant. Routers and
switches allow communications between hosts despite them
not being physically connected. The communications between
hosts, however, are subject to the configuration of the hosts
themselves as well as the configuration of the routers and
switches between the hosts. The attributes of the directed arcs
in the cyber terrain are defined to capture these restrictions.
Two attributes are defined with every arc: Banned and Access
List. The Access List contains a list of protocols and IP
addresses. The Banned attribute is a Boolean value where a
value of ‘false’ implies that the protocols and IP addresses on
the Access List are the only protocols and addresses allowed
across the directed arc, and everything else is blocked. A value
of ‘true’ defines the opposite.

B. Generating a Cyber Terrain

The creation of a cyber terrain involves determining services
running on each machine and cross-referencing those services
with relevant vulnerabilities. Given the large variation in
services that could run on a host and the large number of
IDS alerts corresponding to vulnerabilities of the services, it
is not realistic to manually create an accurate, complete cyber
terrain for even a small network.

To automate the creation of a cyber terrain, a database
mapping IDS alerts to susceptible services and versions is
necessary. From the IDS alert alone, it is impossible to
accurately determine what service was compromised by that
attack. However, databases, e.g., Nessus and Bugtraq, provide
information on which services (and versions) are susceptible
to which vulnerabilities. Massicote et. al. [20] noted that 47%
of Snort alerts did not provide Nessus or Bugtraq references,
so those alerts need to be manually classified. This, however,
would only be a one-time inconvenience.

Scanners such as Nessus and NMAP can be used to scan
the network for the remote services running on each machine.
Once the services are identified, the database discussed above
can be queried for relevant IDS alerts. The service trees then
can be created for each host. The network scanning provides
only remotely exploitable services. Local services would need
to be identified by the administrator or a local scan of each
host.

The directed arcs representing allowed and banned protocol
communication between hosts are critical to the terrain model.
One possible way to define the arcs is by having each host scan
all other hosts to determine remote access protocol or ports
allowed or banned. This could, however, generate unwanted
traffic. Another method is to analyze router and firewall
configurations and determine the set of protocols allowed or
banned between access domains or subnets.

Fig. 2. An example of cyber terrain model where three nodes are connected with logical arcs.

C. Threat Projection using Cyber Terrain

The cyber terrain model is designed to capture the rela-
tionship between services and privileges associated with the
hosts. As IDS alerts are grouped into attack tracks, a threat
assessment may use a cyber terrain model to determine which
services are compromised, to what extent, and, then, which
services are at a higher risk given the current situation. We
shall illustrate the use of cyber terrain using the example
shown in Figure 2. Consider the following four-alert attack
track.

1) ‘ICMP PING LINUX/*BSD’ (Internet → Host A, TCP)
2) ‘Linux x86 buffer overflow’ (Internet → Host A, TCP)
3) ‘Mountd overflow’ (Internet → Host A, TCP)
4) ‘ICMP PING Windows’ (Host A → Host B, ICMP)

The first alert ‘ICMP PING LINUX/*BSD’ is mapped to
a leaf of the RedHat Linux service tree in Host A with
a privilege of ‘None’. The cyber terrain model reveals that
the attacker knows Linux is running on Host A, yet he
gains no privileges to Host A because it is just a knowledge
discovery attack. The attacker then executes a ‘Linux x86
buffer overflow’ attack with the knowledge that Host A is
running Linux. However, the Linux version running on Host
A is not vulnerable to such an attack. This is deduced since
‘Linux x86 buffer overflow’ is not a child alert in the Host
A model. The second attack attempt is considered a failure.
The attacker then tries again with the Mountd overflow attack.
Since this is an alert child node in Host A, it can be assumed
that Host A is now compromised with the attacker gaining
system-level privilege. The most recent action detected is an
‘ICMP PING Windows’ action for Host B. Although Host B
is a Windows machine, this is also a failed attempt because
the arc between Hosts A and B does not permit ICMP traffic.

Both the success and failed attempts are indicative to po-
tential future attack actions. The use of cyber terrain provides

contextual reasoning in terms of ‘exposed vulnerabilities’,
‘demonstrated capabilities’, and ‘host criticality’.

• Demonstrated Capabilities: Despite that failed attacks
do not pose any threat to the integrity of the network,
they do provide information for threat assessment. Failed
attacks give a clue to the capability of the attacker. In
the example above, ‘Linux x86 buffer overflow’ failed
for Host A; yet, it would have been successful had
the attacker executed it on Host C. Since there is no
banned protocol between Host A and C and Host C is
also susceptible to executed ICMP PING LINUX/*BSD’,
Host C is likely to be a victim of next attack. Hosts
that have the same services or similar services may be
susceptible to a common set of attacks. The cyber terrain
model allows identifying the same alert nodes in different
machines that are connected with no conflicting banned
protocol.

• Exposed Vulnerabilities: In many cases, an attacker
discovers the running services on a machine and then
decides on which exploits to execute. The example above
demonstrates that the attacker attempted two Linux-based
intrusive exploits, one failed and the other succeeded. A
cyber terrain model in real life will have many service
trees for each host and many alert nodes for each service
tree. Thus, a reasoning based on which service vulner-
abilities are discovered gives indication of the type of
exploits the attacker may attempt next.

• Host Criticality: The numerical criticality values present
two uses for threat assessment. First, a host that contains
critical data or essential to a network’s operation could be
more likely to be the target of an attack. Second, as the
criticality may be derived based on traffic volume, a host
with high criticality may lead to more machines exposed
to the attacker (i.e., connected with no banned protocol).

In this case, a higher weight should be placed on the
compromised hosts that have higher criticality score when
applying the previous two rules.

III. CYBER ATTACK BEHAVIOR EXTRACTION AND

MODELING

With cyber terrain providing projections of targets exposed
to detected attacks, this section discusses our approach to
predict based on attacker’s behavior or tendency. To our
knowledge, no similar work has been conducted. In fact, prior
to this investigation, we were unsure whether there existed
behavior patterns to be extracted.

We consider IDS alerts as observables of tracked attack
actions. These tracks, however, may be filled with ‘noise’ -
one attack action may trigger multiple alerts from one or more
IDSs. Thus, we filter by removing alerts that have the same
description fields (signature, source IP, target IP, etc.) as the
preceding alert, and if they fall within ∆t = 1 second from
each other. Note that our heuristic filtering process does not
re-create the actual attack actions; however, we believe that an
analyst or an expert system may be able to extrapolate behavior
from these filtered alert sequences. The resulting sequences are
the basis of our behavior prediction process.

Each filtered attack sequence consisting of n alerts is con-
verted to s = {x1, x2, ...xn} where xi belongs to the alphabet
Ω. The choice of field or fields for characterizing the cyber
attack will have a direct impact on Ω. For example, the larger
the pool of alert fields used, the larger the alphabet size will
be. This work considers the description field from Snort [21]
alerts. This choice is made to reflect the attacker’s tendency in
choosing reconnaissance and exploitation methods, and allows
mapping to system and network vulnerabilities.

A. Finite-context models and Suffix Trees

Leveraging the work on compression and prediction [19],
we adopt a context-based model in which future events of an
nth order model depend on the n previous observations:

Pn{xt+1|xt−n+1, ..., xt}. (1)

A modified suffix tree is implemented to record all suffixes
of the filtered attack sequences. The algorithm was motivated
by the work of Begleiter, El-Yaniv, and Yona [26], and
modified to take a set of finite length sequences instead of
a single long sequence of observations. To illustrate, a tree
built based on a single sequence ‘+FGGFGF∗’ is shown in
Figure 3. Note that ‘F ’ and ‘G’ correspond to Snort alerts
‘WEB-IIS nsiislog.dll access’ and ‘WEB-MISC Invalid HTTP
Version String’ and ‘+’ and ‘∗’ mark the start and the end
of the attack sequence. Edges are weighed with the number
of times the suffix tree is traversed through that branch. For
examples, ‘FGF∗’ happened only once in the sequence while
‘FG’ happened twice.

A suffix tree can be used for prediction once its been
built from representative attack sequences. Prediction involves
determining the most likely future action (xt+1) given an

root

F

3

G

3

+FGGFGF*

1

*

1

G

2

F*
1

GFGF*

1

F

2

GFGF*

1

GF*

1

*

1

Fig. 3. The suffix tree for a finite sequence ‘+FGGFGF∗’.

unfolding sequence of alerts s = {x1, x2, ..., xt}. The nth

order prediction may be expressed as follows.

xt+1 = arg max
xi∈Ω

Pn{xi|xt−n+1, ..., xt}, (2)

where n ≤ t. The probability Pn is derived from the suffix tree
branch counts and it reflects the probability of an nth finite-
context model, that is, n previous observations are taken into
account when computing Pn.

For example, consider using the suffix tree shown in Figure
3 to predict the next attack action following ‘+GF ’. The
minus one order prediction will give an equal probability to all
possible values in the alphabet Ω. The zero order prediction
will conclude that G and F are equally likely with P 0{F} =
P 0{G} = 3/7 (with P 0{∗} = 1/7. The first order model will
predict G since P 1{G|F} = 2/3 and P 1{∗|F} = 1/3. The
second order model will predict that G and ∗ are equally likely
with P 2{G|GF} = P 2{∗|GF} = 1/2.

A logical extension of the nth order prediction models is
to combine or blend probabilities from several finite-context
predictors. Let P o(x) be the probability of a character x ∈ Ω
happening according to the oth order model given a suffix
tree and an observed sequence. The blended probability is the
weighted sum of P o(x):

P (x) =
m∑

o=−1

wo × P o(x) (3)

where m is the longest match for the observed sequence s in
the suffix tree.

Probabilities for a 0th order model (P 0) are the normalized
counts of all possible characters in the alphabet. A minus one
order model is used such that P−1(x) = 1/|Ω| for all x ∈ Ω.
Interested readers may refer to [19] for a detailed discussion
on the minus one order model and the zero frequency problem.

The weights wo can be derived with different blending

schemes. This work adopts a blending scheme from [19]:

wm = (1 − em)

wo = (1 − eo) ×
m∏

i=o+1

ei, −1 ≤ o < m

eo =
1

co + 1
where co is the number of length-o sequences in the suffix
tree. The blended predictor will be referred to as the Variable
Length Markov Model (VLMM).

B. Experiments and Discussion

We conduct a series of experiments using the cyber attack
data generated by Skaion Corporation on a VMware network
with actual scripted attacks [27]. The data set includes a total
of 1,113 attack sequences and a total of 4,756 alerts after
the filtering process. The data set contains 47 distinct attack
types that form the alphabet Ω. The length of the filtered
attack sequence varies from 2 to 220. The goal is to determine
whether attack patterns exist and are indicative for future
exploit methods. The attack data set is randomly split into
two halves, one for building the suffix tree and the other for
testing. Ten independent tests with different random splits of
the data set were used for the results reported in this section.

Predictions based on the 0th, 1st, 2nd, and 3rd order finite-
context models as well as predictions based on the VLMM
were compared against ground truth. The performance was
measured by the prediction rate (%), which is defined as the
number of predictions that are correct over the total number
of predictions. Prediction rates of each model are calculated
with respect to the top candidate (the one with the highest
probability), with the top two candidates, and with the top
three candidates.

Figure 4 shows the top-1, top-2, and top-3 prediction
rates for each model; each data point is averaged over 10
independent runs with error bars corresponding to ±1 standard
deviation. It can be clearly seen that the 0th and the 4th order
models perform inferior to the 1st, 2nd, and VLMM. The poor

Fig. 4. The top-1, top-2, and top-3 prediction rates achieved by the various
context-based models.

4̃0% top 3 prediction rate exhibited by the 0th order model
validates that the most frequent exploits are not at all indicative
of attack behavior; consider that an experienced analyst may

be able to deduce a few subsequent exploits after observing
the attack sequence. The poor prediction rate (less than 50%)
exhibited by the 4th order model suggests that inference with
long contexts can be misleading. Higher-order models perform
even worse. Studying the training and test sets, we found
that long attack sequences are rare and by and large different
from each other. Our results strongly suggest that the 1st and
the 2nd order contexts are most useful in predicting cyber
attack exploits. In other words, the next exploit has a strong
correlation with the previous one or two exploits. The VLMM
that blends the predictions from various orders takes such
advantage and performs well with near 90% prediction rate
given its top 3 predictions.

One noticeable characteristic of the data set is the ‘homo-
geneity’ of characters within an attack sequence. Our data
set seems to be dominated by few characters that tend to
repeatedly appear in the same sequence even after the filtering
process. The top three attacks (out of 47) occurring in the
entire data set are ‘ICMP PING NMAP’, ‘WEB-MISC In-
valid HTTP Version String’, and ‘(http inspect) BARE BYTE
UNICODE ENCODING’, which account for 43.5%, 22.4%,
and 9.0%, respectively. In particular, ‘ICMP PING NMAP’ is
followed by ‘ICMP PING NMAP’ 87.7% of the time (instead
of followed by other attack actions). This leads to a question:
is our prediction biased due to the repeating and excessive
‘ICMP PING NMAP’?

An experiment was conducted with the prediction rates
calculated for two cases: when consecutive attack descriptions
are the same (repeating attacks) and when consecutive attack
descriptions are different (non-repeating attacks). Figure 5
shows the top-3 prediction rates achieved by the different
models for the repeating and non-repeating attacks. The results
clearly suggest that repeating attacks are more accurately
predicted, with over 95% prediction rates achieved by 1st, 2nd,
and VLMM. The non-repeating attacks are not as accurately
predicted. Only VLMM achieves over 80% prediction rate
when considering the top-3 predictions.

Fig. 5. The top-3 prediction rates achieved by the various context-based
models when predicting repeating and non-repeating attacks.

Figure 4 would lead one to conclude that 1st and 2nd

order models perform approximately equal to VLMM. How-
ever, Figure 5 shows evidence that blending higher order
contexts does help improve prediction for non-repeating at-

tacks. VLMM may significantly outperform 1st and 2nd order
models for data sets characterized by non-repeating attacks. In
addition, better blending or filtering schemes may yield even
higher prediction rates for these types of data sets.

IV. CONCLUSION

This paper proposes two approaches that can be jointly used
for threat projection of cyber attacks. The proposed virtual
cyber terrain aims at capturing the relationships between hosts,
services, and privileges in a computer network. Overlaying
traced IDS alerts onto the cyber terrain allows contextual
reasoning based on vulnerabilities exposed, service similarity,
and the host criticality. The projected threats based on cyber
terrain can be potentially reduced based on attack behavior
inference. A general context-based model is adopted to extract
patterns exhibited from traced attack data. Our experiments
suggest that the past two attack actions are most indicative to
the next attack action in the same attack track, and that longer
contexts help if observed attack actions change frequently.

Many questions arise from this work. Automating the
generation and updating of cyber terrain is a challenging
task that may require the development of new network and
host scanning tools. The definition of host criticality and its
use should be further investigated. The cyber terrain model
needs to be tested across different data sets to determine how
effective the defined relationships are in projecting attacks. The
novel attempt in developing a cyber attack behavior prediction
model has shown promising results. However, there is a large
room for improvement with a better filtering process and a
better blending scheme. Ongoing work is to investigate a
predictor that is immune to missing, redundant, and incorrect
observations. Finally, this research would benefit from a justifi-
able mathematical definition to adjust cyber terrain projections
based on the behavior models.

ACKNOWLEDGMENTS

This work is funded through the National Center for Multi-
source Information Fusion (NCMIF) grant under the technical
supervision of AFRL/IFEA. The authors would like to thank
Adam Stotz, Moises Sudit, John Salerno, Michael Hinman,
and George Tadda for their comments toward the development
of the virtual cyber terrain and providing the data set for
behavior extraction.

REFERENCES

[1] T. Bass, “Intrusion detection systems and multisensor data fusion,”
Communications of the ACM, vol. 43, no. 4, April 2000.

[2] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Recent
Advances in Intrusion Detection (RAID 2001), ser. Lecture Notes
in Computer Science, no. 2212. Springer-Verlag, 2001. [Online].
Available: http://www.sdl.sri.com/papers/raid2001-pac/

[3] F. Cuppens and A. Miege, “Alert correlation in a cooperative intrusion
detection framework,” in Proceedings of 2002 IEEE Symposium on
Security and Privacy, 2002, pp. 202–215.

[4] P. Ning, Y. Cui, and D. Reeves, “Constructing attack scenarios through
correlation of intrusion alerts,” in Proceedings of the 9th ACM Confer-
ence on Computer & Communications Security, 2002, pp. 245–254.

[5] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive
approach to intrusion detection alert correlation,” IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 3, pp. 146–169, July-Sep
2004.

[6] P. Ning, Y. Cui, D. Reeves, and D. Xu, “Tools and techniques for
analyzing intrusion alerts,” ACM Transactions on Information and
System Security, vol. 7, no. 2, pp. 273–318, May 2004.

[7] D. Xu and P. Ning, “Alert correlation through triggering events and
common resources,” in Proceedings of 20th Annual Computer Security
Applications Conference, December 2004, pp. 360–369.

[8] M. Sudit, A. Stotz, and M. Holender, “Situational awareness of a
coordinated cyber attack,” in Proceedings of SPIE, Defense and Security
Symposium, March 2005, pp. 114–129.

[9] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
intrusion alerts through multi-host causality,” in Proceedings of the
2005 Network and Distributed System Security Symposium (NDSS’05),
February 2005.

[10] S. Mathew, D. Britt, R. Giomundo, S. Upadhyaya, M. Sudit, and
A. Stotz, “Real-time multistage attack awareness through enhanced
intrusion alert clustering,” in Proceedings of IEEE Military Commu-
nications Conference, MILCOM, October 2005, pp. 1–6.

[11] U.S. Department of Defense, Data Fusion SubPanel of the Joint Direc-
tors of Laboratories, “Technical panel for C3,” in Data Fusion Lexicon,
October 1991.

[12] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
in Proceedings of the IEEE, vol. 85, no. 1, January 1997, pp. 6–23.

[13] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisions and extensions to the JDL data fusion model II,” in Proceed-
ings of The 7th International Conference on Information Fusion, June
2004, pp. 1218–1230.

[14] C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proceedings of the 1998 workshop on New
security paradigms. New York, NY, USA: ACM Press, 1998, pp.
71–79. [Online]. Available: http://doi.acm.org/10.1145/310889.310919

[15] S. Vidalis and A. Jones, “Using vulnerability trees for decision making
in threat assessment,” University of Glamorgan, School of Computing,
Tech. Rep. CS-03-2, June 2003.

[16] Y. Liu and H. Man, “Network vulnerability assessment using Bayesian
networks,” in Proceedings of Data Mining, Intrusion Detection, Infor-
mation Assurance, and Data Networks Security, vol. 5812, March 2005,
pp. 61–71.

[17] X. Qin and W. Lee, “Attack plan recognition and prediction using
causal networks,” in Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC’04), December 2004.

[18] J. Holsopple, S. J. Yang, and M. Sudit, “TANDI: Threat assessment for
networked data and information,” in Proceedings of SPIE, Defense and
Security Symposium, vol. 6242, April 2006.

[19] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Prentice
Hall, 1990.

[20] F. Massicotte, M. Couture, L. Briand, and Y. Labiche, “Context-based
intrusion detection using Snort, Nessus and Bugtraq databases,” in
Proceedings of the Third Annual Conference on Privacy, Security and
Trust, Fredericton, October 2005.

[21] Sourcefire, “Snort: an open source network intrusion prevention and
detection system,” 2006, http://www.snort.org.

[22] Tenable Network Security, Inc., “Nessus vulnerability scanner,” 2006,
http://www.nessus.org/.

[23] SecurityFocus, “Bugtraq vulnerability database,” 2006, http://www.
securityfocus.org/bid.

[24] Mitre, “Common vulnerabilities and exposures (CVE dictionary),” 2007,
http://cve.mitre.org/.

[25] Insecure.com, “Nmap (Network Mapper): a free open source utility for
network exploration or security auditing.” 2006, http://insecure.
org/nmap.

[26] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable
order markov models,” Journal of Artificial Intelligence, vol. 22, pp.
385–421, 2004.

[27] R. Stapleton-Gray and S. Gorton, “Rendering the elephant: Character-
izing sensitive networks for an uncleared audience,” in Proceedings of
the 7th IEEE Information Assurance Workshop, June 2006.

