August 13, 2004 13th Annual Undergraduate Research Symposium

Boresight Calibration of the WASP Airborne Mapping Camera System

Presenter: D. Fava Researcher: J. Park & WASP Research Group Advisor: H. Rhody & WASP Research Group

Rochester Institute of Technology, RIT Rochester, NY

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

Presentation objective

- Give an overview of the Wildfire Airborne Sensor Program, WASP
- Show the importance of the boresight calibration method for aerial photography in general and for the WASP
- How WASP is handling the boresight calibration

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

Overview about the Wildfire Airborne Sensor Program

- WASP's objective
 - improve current methods used to detect fire in forest areas
- How to attain

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

- set of cameras connected to a GPS and computer
- mount equipment on small size plane and fly over forest
- cameras are shot every 4 or less seconds
- images are processed in real time on the plane

WASP Accomplishments

- Test flights over RIT
- Flight over controlled burn in Ohio
 - fire propagation model
 - high resolution DEM, digital elevation model
- Rewriting the acquisition system and plug to
 - image-to-image registration
 - georeference
 - mosaicing modules
 - fire detection

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

WASP Hardware

- GPS and IMU or Inertial Measurement Unit give cameras position and orientation
- Gimbal swing about 60 degrees to increase swath
- Airborne Data Processor or ADP
- 16 mega pixel visible camera region overview
- Three infrared cameras core fire detection
 - short wave 0.9 to $1.7\mu m$
 - medium wave 3.0 to 5.0 μ m
 - long wave 8.0 to 9.2 μm

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T} =$

Overview of capturing process

WASP Airborne Data Processor Automated Processing Flow

 $R \cdot I \cdot T =$

Airborne Data Processor

Why boresight

- Boresight is the relation between camera and Inertial Measurement Unit, IMU
- Boresight is a crucial for image to image registration. The images need to stack on top of each other so their pixels represent the same ground feature
- Boresight allows the creation of high resolution image-maps to locate burn areas

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$ _____

Band to Band Registration without Boresight

Band to Band Registration with Boresight

Band Assignment

LWIR (long wave infrared) RED MWIR (mid wave infrared) GREEN SWIR (short wave infrared) BLUE

> 640 by 512 pixels 25 micro meter pixel size 16 bit images

Chester F. Carlson Center for Imaging Science

Deriving the boresight

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T} =$

Triangulation – [M]AT

Block Diagram with GCP

Ν

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T} =$

GCP [Ground Control Points]

§ 22 GCPs § 43 Images in 5 strips

Requirements § GCP in beginning and end of strip § Opposite flying directions

§ Opposite flying directions § Minimum of two strips

IO and EO

- Interior Orientation or IO
 - Focal length
 - Radial lens distortion (K0, K1 and K2)
 - Pixel size

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

• Exterior Orientation or EO

 $-(x, y, z, \omega, \phi, \kappa)$

Adding Points

 $R \cdot I \cdot T =$

Bundle Adjusted EO Validation

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T} =$

Deriving the angles from the orientation matrix

The orientation matrix M is derived from M ω , M Φ and MK, which are the rotation matrices with respect to x, y and z axis:

 $M = M_{\omega} M_{\phi} M_{\kappa}$

 $R \cdot I \cdot T$ _____

 $M = \begin{bmatrix} \cos \Phi \cos K & \cos \omega \sin K + \sin \omega \sin \Phi \cos K & \sin \omega \sin K - \cos \omega \sin \Phi \cos K \\ -\cos \Phi \sin K & \cos \omega \cos K - \sin \omega \sin \Phi \sin K & \sin \omega \cos K + \cos \omega \sin \Phi \sin K \\ \sin \Phi & -\sin \omega \cos \Phi & \cos \omega \cos \Phi \end{bmatrix}$

Omega (roll), phi (pitch) and kappa (yaw) are derived from the following relationships:

$$\sin \Phi = m_{31}$$

$$-\tan \omega = \frac{-\sin \omega \cos \Phi}{\cos \omega \cos \Phi} = \frac{m_{32}}{m_{33}}$$

$$-\tan K = \frac{-\cos \Phi \sin K}{\cos \Phi \cos K} = \frac{m_{21}}{m_{11}}$$
Chester F. Carlson Center for Imaging Science

Deriving the boresight matrix $[\Delta M]$

Transformation to be applied to post processed exterior orientation (IMU attitude with differential GPS) that will yield the orientation of each cameraThis transformation is a matrix multiplication of the unknown boresight matrix

 (ΔM) matrix and the known IMU attitude

 $[M]AT = [\Delta M][M]POS$

Multiplying both sides by [M]POS-1 yields

$[\Delta M] = [M]AT \times [M]POS-1$

- [M]AT is the orientation matrix from Aerial Triangulation
- [Δ M] is the transformation matrix
- [M]POS is the IMU's attitude

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

Deriving the Boresight Angles

Validating the Derived Boresight Angles

R·I·T _____ Chester F. Carlson Center for Imaging Science

What is next

Limitations and areas for improvement:

- How to take GPS accuracy deterioration high altitudes into account.
- Not accounting for lever arm between IMU and cameras
- There are other more robust triangulation software
- Picking tie points in IR imagery is error prone (distortion and low resolution)
- Hard to keep consistency when terms and signs are defined differently among the literature and software vendors

Future steps:

- Use data sets over other regions to validate boresight
- Assess fire detection algorithm's performance using boresight corrected imagery
 - Real time GPS data (without differential correction)
 - Vary flying height (4k to 10k)

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$ _____

• Resort to other registration techniques if boresight correction doesn't produce adequate results

Who is involved

Chester F. Carlson Center for Imaging Science

Funded by US Forest Se as potential user Corporations

- Pictometry, Pixel Physics, LightForce Technology Inc, Landcare Aviation Consultant
- Don Light

 $R \cdot I \cdot T$

Educational institutions

• University at Buffalo, State University of New York, Cayuga Community College

Questions?

Thank you!

