
Getting started with
the K Framework

Precise Modeling and Analysis group
University of Oslo

Daniel Fava
(borrowing material from Grigore Roşu’s slides)

February 24, 2017

What is it?

The K framework is

I an executable semantic framework

I based on rewriting logic
I used to define

I programming languages
I type systems and
I formal analysis tools

Disclaimer: this is not an introduction to rewriting
Goal: to help you get to know the tool and get started

After defining a programming language L in K, you get:

I A parser and compiler for the language

I An interpreter for programs in the language
I Facilities to perform model checking

I E.g., Is state X reachable when running a non-deterministic
program P of language L?

I Facilities for exporting the language definition into Coq

Motivation

Shortcomings of existing frameworks
I Hard to deal with control (except evaluation contexts)

I halt, break/conInue, excepIons, callcc

I Nonmodular (except Modular SOS)
I Adding new features require changing unrelated rules

I Lack of semantics for true concurrency (except CHAM)
I BigStep captures only all possible results of computation
I Reduction approaches only give interleaving semantics

I Tedious to find next redex (except evaluation contexts)
I One has to write the same descent rules for each construct

I Inefficient as interpreters (except for BigStep SOS)

[rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi]

Vision and objective of KVision	and	Objective
Deductive	
program	
verifierParser

Interpreter

Compiler

(semantic)	
Debugger

Symbolic	
execution

Model	
checker

Formal	Language	Definition	
(Syntax	and	Semantics)

Test-case	
generation

6

[Roşu 2015-06-29-RTA]

Short history of K

Grigore Ruşu and José Meseguer, 2003/2004

I Project to define the semantics of a programming language as
a rewrite theory

I Showed that most executable semantics approaches can be
framed as rewrite logic semantics
(Modular/SmallStep/BigStep SOS, evaluation contexts,
continuation-based, etc.)

Evolved into the K tool currently being developed at

I University of Illinois Urbana-Champaign

I Runtime Verification Inc.

I Alexandru Ioan Cuza University (UAIC), Romania

Theoretical underpinnings: Matching Logic [RTA’15]
The International Conference on Rewriting Techniques and Applications

Successes

Many programming languages’s semantics have been defined in K
I Java, the Java Virtual Machine, LLVM, OCaml, Python, etc

“The most complete formal C semantics”

Tested on thousands of C programs (several benchmarks, including
the gcc torture test, code from the obfuscated C competition, etc.)

I Passed 99.2% so far

I GCC 4.1.2 passes 99%, ICC 99.4%, Clang 98.3% (no opt.)

[POPL12, PLDI15]

1 module EXP-SYNTAX

3 //@ Arithmetic Syntax
4 syntax Exp ::= Int
5 | "(" Exp ")" [bracket]
6 | Exp "+" Exp [seqstrict] //addition
7 | Exp "*" Exp [seqstrict] //multiplication
8 | Exp "/" Exp [seqstrict] //division
9 | Exp "?" Exp ":" Exp [strict(1)]

10 | Exp ";" Exp [seqstrict]

12 //@ Input / Output Syntax

14 syntax Exp ::= "read"
15 | "print" "(" Exp ")" [strict]

18 //@ Concurrency features
19 syntax Exp ::= "spawn" Exp
20 | "rendezvous" Exp [strict]
21 end module

23 module EXP
24 imports EXP-SYNTAX
25 syntax KResult ::= Int
26 configuration
27 <k color="green" multiplicity="*"> $PGM:K </k>
28 <streams>
29 <in color="magenta" stream="stdin"> .List </in>
30 <out color="Fuchsia" stream="stdout"> .List </out>
31 </streams>

33 //@ Arithmetic Semantics

35 rule I1:Int + I2:Int
36 => I1 +Int I2

38 rule I1:Int * I2:Int
39 => I1 *Int I2

41 rule I1:Int / I2:Int => I1 /Int I2
42 requires I2 =/=Int 0

44 rule 0 ? _ : E:Exp => E

46 rule I:Int ? E:Exp : _ => E requires I =/=Int 0

48 rule _:Int ; I2:Int => I2

51 //@ Input / Output Semantics

54 rule <k> read => I:Int ...</k>
55 <in> ListItem(I) =></in>

59 rule <k> print(I:Int) => I ...</k>
60 <out>... . => ListItem(I) </out>

64 //@ Concurrency Semantics

67 rule <k> spawn E => 0 ...</k>
68 (. => <k> E </k>)

73 rule <k> rendezvous I => I ...</k>
74 <k> rendezvous I => I ...</k>

77 end module

MODULE EXP-SYNTAX

Arithmetic Syntax

SYNTAX Exp ::= Int
| (Exp) [bracket]
| Exp + Exp [strict]
| Exp * Exp [strict]
| Exp / Exp [strict]
| Exp ? Exp : Exp [strict(1)]
| Exp ; Exp [seqstrict]

Input / Output Syntax

SYNTAX Exp ::= read
| print (Exp) [strict]

Concurrency features

SYNTAX Exp ::= spawn Exp
| rendezvous Exp [strict]

END MODULE

MODULE EXP

SYNTAX KResult ::= Int

CONFIGURATION:

$PGM

k*

•List

in

•List

out

streams

Arithmetic Semantics

RULE I1 + I2

I1 +Int I2

RULE I1 * I2

I1 ⇤Int I2

RULE I1 / I2

I1 ÷Int I2

requires I2 =/=Int 0

RULE 0 ? — : E

E

RULE I ? E : —

E

requires I =/=Int 0

RULE — ; I2

I2

Input / Output Semantics

RULE read

I

k

I

•List

in

RULE print (I)

I

k

•List

I

out

Concurrency Semantics

RULE spawn E

0

k

•Bag

E

k

RULE rendezvous I

0

k

rendezvous I

0

k

END MODULE

Fig. 4. K definition of a calculator language with I/O (left: ASCII source; right: generated LATEX)

19

K'11, ENTCS. 2014

Some features

I Built-in types
I Bool, Int, Float, String, Id, List, Set, Map, ...

I Support for literate programming
I Embed latex annotations into language definition

I Support for generating documentation
I .tex, .pdf

K in a nutshell

Komputations

I Sequences of tasks

I Capture the sequential fragment of programming languages

Konfigurations

I Bags of nested cells (XML/HTML like syntax)

I Modularity

K rules

I Precisely identify changes

I More concise and concurrent than regular rewrite rules

[rosu-serbanuta-2010-jlap-slides-2011-01-14-Iasi]

Demo

Getting started, Tutorial

Tutorial videos (around 6 minutes each)
with written transcript and code
http://www.kframework.org/index.php/K_Tutorial

I Extremely useful and (relatively) easy to follow

I Shows how to implement a store, input/output, closures, etc

I Define Lambda, a call-by-value variant of lambda calculus

I Define IMP, a C-like imperative language

I Define Lambda++, adds call/cc to Lambda

I etc

http://www.kframework.org/index.php/K_Tutorial

Getting started, Other help

I Papers and Tutorials
http://fsl.cs.illinois.edu/index.php/FSL_Publications

I The K primer (version 3.3)

I Mailing list
https://lists.cs.illinois.edu/lists/arc/k-user

I Frequently read and answered by the developers

I Semantics of
I C, LLVM, Java, JVM, OCaml, Python, etc

Code available on the git repo

http://fsl.cs.illinois.edu/index.php/FSL_Publications
https://lists.cs.illinois.edu/lists/arc/k-user

Getting started, Versions

I Tutorial videos based on K version 3.4,
but v3.4 is no longer supported

I Latest release is 4.0, but missing some features
such as the latex back-end and pretty printing

I Can get pre-compiled binaries or build from source
https://github.com/kframework

I It is ok to start with the precompiled binaries
But I suggest cloning the git repo and build from source

https://github.com/kframework

Getting started, Installation from source

Instructions from https://github.com/kframework/k

1. Apache Maven
I Check if it is installed by typing mvn -v on the command line
I If not installed, can use a package manager
I I use brew on the Mac [Can install brew on IFI machines even without sudo]

2. Java JDK (version 8u45 or higher)

3. git clone https://github.com/kframework/k

4. Add an environment variable and edit $PATH
I Add to $PATH

<PATH TO K>/k/k-distribution/target/release/k/bin
I Add environment variable MAVEN OPTS and set it to

-XX:+TieredCompilation

5. cd into the k directory and run the following commands
I mvn package (can take about 5 1/2 minutes)
I mvn verify (can take about half hour)

https://github.com/kframework/k

Thank you

	Intro
	Demo
	Getting started

