Ready, set, Go!
 Data-race detection and the Go language

Daniel S. Fava
danielsf@ifi.uio.no
Martin Steffen
msteffen@ifi.uio.no

Department of informatics
University of Oslo, Norway

SBMF'19
São Paulo, Brazil

Tools that detect data races are important.

Tools that detect data races are important.

Data races

Tools that detect data races are important.

Data races

- Subtle bugs

Tools that detect data races are important.

Data races

- Subtle bugs
- Unknown semantics (under weak-memory)

A memory model informs us how our multi-threaded programs behave.

A memory model informs us how our multi-threaded programs behave.

Initially z = 0; done = false;

$$
\begin{array}{l|l}
\quad \mathrm{T} 1 & \mathrm{~T}, \\
\mathrm{z} \quad=42 & \mid \\
\text { done }=\text { true } & \\
& \text { while (!done) \{\} } \\
& \text { print("t2", z) }
\end{array}
$$

Relaxed memory models are complex.

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

$$
\left[P \rrbracket_{s c}\right.
$$

$$
P
$$

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

$$
\left[P \rrbracket_{s c}\right.
$$

$$
\llbracket P \rrbracket_{w}
$$

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then memory behaves Sequentially Consistently (SC).

There is little about data-race detection and channels. Instead, there has been research on...

There is little about data-race detection and channels. Instead, there has been research on...

Race detection \& message passing.

There is little about data-race detection and channels. Instead, there has been research on...
$\sqrt{ }$ Race detection \& message passing.

- No shared memory.
- Races as competing to send-to/receive-from channels.
- Absence of races imply determinism.

There is little about data-race detection and channels. Instead, there has been research on...
\checkmark Race detection \& message passing.

- No shared memory.
- Races as competing to send-to/receive-from channels.
- Absence of races imply determinism.

Origin of the happens-before relation and vector clocks.

There is little about data-race detection and channels. Instead, there has been research on...

There is little about data-race detection and channels. Instead, there has been research on...
\checkmark Data-race detection \& locks

There is little about data-race detection and channels. Instead, there has been research on...
\checkmark Data-race detection \& locks
Shared memory, but
no channels,
no synchronization via message passing.

We express race-detection for a language with message passing as the sole synchronization primitive.

We express race-detection for a language with message passing as the sole synchronization primitive.

We express race-detection for a language with message passing as the sole synchronization primitive.

Operational Semantics of a Weak Memory Model with Channel Synchronization

Daniel Fava Martin Steffen Volker Stolz
[FM'18, JLAMP'18]
II. Background

A data race constitutes memory accesses that conflict and are concurrent.

A data race constitutes memory accesses that conflict and are concurrent.

Conflict $\left\{\begin{array}{l}\text { same memory location, } \\ \text { at least one access is a write. }\end{array}\right.$

A data race constitutes memory accesses that conflict and are concurrent.

Conflict $\left\{\begin{array}{l}\text { same memory location, } \\ \text { at least one access is a write. }\end{array}\right.$

Concurrent: not ordered by happens-before.

The Go memory model.

The Go memory model.

- Within a single thread,
- reads and writes must behave as if they executed in the order specified by the program;

The Go memory model.

- Within a single thread,
- reads and writes must behave as if they executed in the order specified by the program;
- reorder is allowed only when it does not change the behavior within that thread.

The Go memory model.

- Within a single thread,
- reads and writes must behave as if they executed in the order specified by the program;
- reorder is allowed only when it does not change the behavior within that thread.
- The execution order observed by one thread may differ from the order observed by another.

Initially z = 0; done = false;

Initially z = 0; done = false;

$$
\text { Initially } z=0 \text {; done = false; }
$$

T1		T2		
$\mathrm{z}=42$	(A)	:		
done $=$ true	(B)	if (done)	(C)	
			print("t2", z)	(D)

$$
A \rightarrow_{h b} B
$$

$$
\text { Initially } z=0 \text {; done = false; }
$$

The Go memory model.

The Go memory model.

A send happens-before the corresponding receive completes.
[Go memory model, 2014]

The Go memory model.

A send happens-before the corresponding receive completes.

Given a channel c with capacity k, the $i^{\text {th }}$ receive from c happens-before the $(i+k)^{t h}$ send completes.
[Go memory model, 2014]

Initially z = 0; done = false;

$$
\mathrm{A} \rightarrow_{\mathrm{hb}} \mathrm{~B} \quad \mathrm{C} \rightarrow_{\mathrm{hb}} \mathrm{D}
$$

Initially z = 0; done = false;

$$
A \rightarrow_{h b} B
$$

$$
C \rightarrow_{h b} D
$$

Initially z = 0; done = false;

$$
\begin{gather*}
\text { T2 } \\
\text { if (done) } \\
\text { print }(" t 2 ", z) \tag{C}\\
C \rightarrow_{\mathrm{hb}} \mathrm{D} \tag{D}
\end{gather*}
$$

$$
\mathrm{A} \rightarrow_{\boldsymbol{h b}} \mathrm{B} \quad \mathrm{C} \rightarrow_{\boldsymbol{h b}} \mathrm{D}
$$

Initially z = 0; done = false;

$$
\mathrm{A} \rightarrow_{\mathrm{hb}} \mathrm{~B} \quad \mathrm{C} \rightarrow_{\mathrm{hb}} D
$$

Initially z = 0; done = false;

$$
\mathrm{A} \rightarrow_{h b} \mathrm{~B} \quad \mathrm{C} \rightarrow_{\mathrm{hb}} \mathrm{D}
$$

Initially z = 0; done = false;

$$
\mathrm{A} \rightarrow_{h b} \mathrm{~B} \quad \mathrm{C} \rightarrow_{\mathrm{hb}} \mathrm{D}
$$

Initially z = 0; done = false;

	T1		\|	T2	
z	= 42	(A)	I		
c	<- true	(B)	I	<- c	(C)
			\|	print("t2", z)	(D)

$$
\mathrm{A} \rightarrow_{h b} \mathrm{~B} \quad \mathrm{C} \rightarrow_{\mathrm{hb}} \mathrm{D}
$$

Initially z = 0; done = false;

	T 1		T 2		
z	$=42$	(A)	$:$		
c	$<-$ true	(B)		$<-c$	(C)
				print("t2", z$)$	(D)

$$
A \rightarrow_{h b} B \quad \mathrm{~B} \rightarrow_{h b} C \quad C \rightarrow_{h b} D
$$

Initially z = 0; done = false;

	T1		\|	T2	
z	= 42	(A)	I		
c	<- true	(B)	I	<- c	(C)
				print("t2", z)	(D)

$$
A \rightarrow_{h b} B \quad B \rightarrow_{h b} C \quad C \rightarrow_{h b} D
$$

$$
A \rightarrow_{h b} D
$$

III. Our approach
III. Our approach

Intuition
III. Our approach

Intuition
Efficiency

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

An access to memory is captured by an event (m,?z) (m(1z)

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

An access to memory is captured by an event $(m$. $? z) \quad(m!z)$

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

Each thread keeps track of events in its past

- Happened-before set, $E_{h b}$

An access to memory is captured by an event $(m, ? z) \quad\left(m^{\prime},!z\right)$

Each thread keeps track of events in its past

- Happened-before set, $E_{h b}$

A memory cell keeps track of

- a variable's value
- set of events that have happened-before to the variable, $E_{h b}$

$$
p\left\langle E_{h b}, t\right\rangle
$$

$$
p\left\langle E_{h b}, t\right\rangle
$$

$\left(E_{h b}^{z}, z:=v\right)$

$$
p\left\langle E_{h b}, t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)
$$

$$
p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{aligned}
$$

fresh(m)

$$
\begin{aligned}
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{aligned}
$$

$$
\operatorname{fresh}(m) \quad E_{h b}^{\prime}=\{(m,!z)\} \cup E_{h b}
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\text { fresh(m) } \begin{array}{c}
E_{h b}^{\prime} \\
E_{h b}^{\prime z}
\end{array}=\{(m,!z)\} \cup E_{h b} \\
\left.\hline p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)\right\} \cup E_{h b}^{z} \\
\rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{z}, z:=v^{\prime}\right)
\end{array}
$$

A write is allowed to proceed if...

fresh(m)	$\begin{aligned} & E_{h b}^{\prime}=\{(m,!z)\} \cup E_{h b} \\ & E_{h b}^{\prime z}=\{(m,!z)\} \cup E_{h b}^{z} \end{aligned}$		
	$\begin{aligned} & \left.E_{h b}, z:=v^{\prime} ; t\right\rangle \\|\left(E_{h h}^{z}, z:=v\right) \\ & \rightarrow \quad p\left\langle E_{h b}^{\prime}, t\right\rangle \\|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right) \end{aligned}$		

A write is allowed to proceed if...

$$
\begin{array}{cc}
\text { fresh(m) } \quad \begin{array}{c}
E_{h b}^{\prime}=\{(m,!z)\} \cup E_{h b} \\
E_{h b}^{\prime z}=\{(m,!z)\} \cup E_{h b}^{z}
\end{array} \quad E_{h b}^{z} \subseteq E_{h b} \\
\hline p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
\rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v^{\prime}\right)
\end{array}
$$

$p\left\langle E_{h b}\right.$, let $r=$ load z in $\left.t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)$

$$
\begin{aligned}
& p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow \quad p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{aligned}
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow \quad p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{aligned}
$$

fresh(m)

$$
\begin{aligned}
& p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \rightarrow p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)
\end{aligned}
$$

fresh(m)

$$
(m, ? z)
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \quad \rightarrow \quad p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{aligned}
$$

$$
\operatorname{fresh}(m) \quad E_{h b}^{\prime}=\{(m, ? z)\} \cup E_{h b}
$$

$$
\begin{aligned}
& p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \rightarrow p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right)
\end{aligned}
$$

$$
\begin{gathered}
E_{h b}^{\prime}=\{(m, ? z)\} \cup E_{h b} \\
E_{h b}^{\prime z}=\{(m, ? z)\} \cup E_{h b}^{z} \\
\hline p\left\langle E_{h b}, \text { let } r=\operatorname{load} z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
\rightarrow \quad p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{gathered}
$$

A read is allowed to proceed if...

$$
\begin{aligned}
& \operatorname{fresh}(m) \quad E_{h b}^{\prime}=\{(m, ? z)\} \cup E_{h b} \\
& E_{h b}^{\prime z}=\{(m, ? z)\} \cup E_{h b}^{z} \\
& p\left\langle E_{h b} \text {, let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
& \rightarrow p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{aligned}
$$

A read is allowed to proceed if...

$$
\begin{gathered}
\text { fresh }(m) \quad \begin{array}{l}
E_{h b}^{\prime}=\{(m, ? z)\} \cup E_{h b} \\
E_{h b}^{\prime z}=\{(m, ? z)\} \cup E_{h b}^{z}
\end{array} \quad E_{h b}^{z} \downarrow \subseteq \subseteq E_{h b} \\
\hline p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \|\left(E_{h b}^{z}, z:=v\right) \\
\rightarrow \quad p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \|\left(E_{h b}^{\prime z}, z:=v\right)
\end{gathered}
$$

Sends and Receives transmit a thread's happens-before set

Sends and Receives transmit a thread's happens-before set
Threads "learn" from each other about past events

Channel receive

$$
\begin{gathered}
v \neq \perp \quad E_{h b}^{\prime}=E_{h b}+E_{h b}^{\prime \prime} \\
c_{b}\left[q_{1}\right] \| \\
c_{b}\left[E_{h b}:: q_{1}\right] \| \\
p\left\langle E_{h b}, \text { let } r=\leftarrow c \text { in } t\right\rangle
\end{gathered} \| c_{f}\left[q_{2}::\left(v, E_{h b}^{\prime \prime}\right)\right] \rightarrow
$$

Channel receive

$$
\begin{gathered}
v \neq \perp \quad E_{h b}^{\prime}=E_{h b}+E_{h b}^{\prime \prime} \\
c_{b}\left[q_{1}\right] \| \\
p\left\langle E_{h b}, \text { let } r=\leftarrow c \text { in } t\right\rangle \\
c_{b}\left[E_{h b}:: q_{1}\right] \| \\
\left.\left.p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \quad \| q_{2}::\left(v, E_{h b}^{\prime \prime}\right)\right]\right) \rightarrow
\end{gathered}
$$

Channel receive

$$
\begin{gathered}
v \neq \perp \quad E_{h b}^{\prime}=E_{h b}+E_{h b}^{\prime \prime} \\
c_{b}\left[q_{1}\right] \| \\
c_{b}\left[E_{h b}:: q_{1}\right] \| \\
p\left\langle E_{h b}, \text { let } r=\leftarrow c \text { in } t\right\rangle \\
p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle
\end{gathered} \| c_{f}\left[q_{2}::\left(v, E_{h b}^{\prime \prime}\right)\right] \rightarrow
$$

Channel send

$\neg \operatorname{closed}\left(c_{f}\left[q_{2}\right]\right) \quad E_{h b}^{\prime}=E_{h b}+E_{h b}^{\prime \prime}$
$c_{b}\left[q_{1}:: E_{h b}^{\prime \prime}\right] \\|$
$c_{b}\left[q_{1}\right] \\|$
$p\left\langle E_{h b}, c \leftarrow v ; t\right\rangle$
$p\left\langle E_{h b}^{\prime}, t\right\rangle$

Efficiency

z_{0}
(2) (c)
$\left(z_{0} \underset{h b}{ }(z!)_{p}\right.$

$$
\text { (2) }- \text { © }
$$

$\left(z_{0} \underset{h b}{\left.\left.(z!)_{p}\right) \underset{h b}{ }\left((z!)_{p}\right)()^{2}\right)}\right.$
$\left.\left(z_{0}\right) \underset{h b}{p}\left((z!)_{p}\right) \underset{h b}{d!}(z!)_{p}-\cdots\right)_{p}$

$\left(E_{h b}^{z}, z:=v\right)$

$$
\begin{gathered}
\left(E_{h b}^{z}, z:=v\right) \\
(m,!z),\left(m^{\prime}, ? z\right) \in E_{h b}^{z}
\end{gathered}
$$

$$
\begin{gathered}
\left(E_{h b}^{z}, z:=v\right) \\
(m,!z),\left(m^{\prime}, ? z\right) \in E_{h b}^{z}
\end{gathered}
$$

Remember only the last write

$$
\begin{gathered}
\left(E_{h b}^{z}, z:=v\right) \\
(m,!z),\left(m^{\prime}, ? z\right) \in E_{h b}^{z}
\end{gathered}
$$

Remember only the last write

$$
m\left(E_{h b}^{r}, z:=v\right)
$$

$$
\begin{gathered}
\left(E_{h b}^{z}, z:=v\right) \\
(m,!z),\left(m^{\prime}, ? z\right) \in E_{h b}^{z}
\end{gathered}
$$

Remember only the last write

$$
\begin{aligned}
& m\left(E_{h b}^{r}, z:=v\right) \\
& E_{h b}^{z} \downarrow!
\end{aligned}
$$

$$
\begin{gathered}
\left(E_{h b}^{z}, z:=v\right) \\
(m,!z),\left(m^{\prime}, ? z\right) \in E_{h b}^{z}
\end{gathered}
$$

Remember only the last write

$$
\begin{gathered}
m\left(E_{h b}^{r}, z:=v\right) \\
E_{h b}^{z} \downarrow!\quad(m,!z)
\end{gathered}
$$

(2)
(zI 1) $(z 7)_{0}$
$\left((z!)_{p} \underset{h b}{ } \rightarrow(z ?)_{p}\right.$
(20)
(13) - (20)
(20)

Updated write-rule for efficient race detection.

$$
\begin{aligned}
& (m,!z) \in E_{h b} \quad E_{h b}^{r} \subseteq E_{h b} \quad \operatorname{fresh}\left(m^{\prime}\right) \\
& E_{h b}^{\prime}=\left\{\left(m^{\prime},!z\right)\right\} \cup\left(E_{h b}-E_{h b} \downarrow_{z}\right) \\
& p\left\langle E_{h b}, z:=v^{\prime} ; t\right\rangle \quad \| m\left(E_{h b}^{r}, z:=v\right) \rightarrow \\
& p\left\langle E_{h b}^{\prime}, t\right\rangle \quad \| m^{\prime}\left(\emptyset, z:=v^{\prime}\right)
\end{aligned}
$$

Updated read-rule for efficient race detection.

$$
\begin{aligned}
& (m,!z) \in E_{h b} \quad \text { fresh }\left(m^{\prime}\right) \\
& E_{h b}^{r}=\left\{\left(m^{\prime}, ? z\right)\right\} \cup\left(E_{h b}^{r}-E_{h b} \downarrow_{z}\right) \\
& E_{h b}^{b}=\left\{\left(m^{\prime}, ? z\right)\right\} \cup\left(E_{h b}-E_{h b} \downarrow z\right) \cup\{(m,!z)\} \\
& \hline p\left\langle E_{h b}, \text { let } r=\text { load } z \text { in } t\right\rangle \quad \| m\left(E_{h b}^{r}, z:=v\right) \rightarrow \\
& p\left\langle E_{h b}^{\prime}, \text { let } r=v \text { in } t\right\rangle \quad \| m\left(E_{h b}^{\prime r}, z:=v\right)
\end{aligned}
$$

Offline garbage-collection.

$$
\begin{aligned}
& E_{h b}^{\prime}=E_{h b}-\left\{(\hat{m},!z) \mid(\hat{m},!z) \in E_{h b} \wedge \hat{m} \neq m\right\} \\
&-\left\{(\hat{m}, ? z) \mid(\hat{m}, ? z) \in E_{h b} \wedge(\hat{m}, ? z) \notin E_{h b}^{r}\right\} \\
& p\left\langle E_{h b}, t\right\rangle\left\|m\left(E_{h b}^{r}, z:=v\right) \rightarrow p\left\langle E_{h b}^{\prime}, t\right\rangle\right\| m\left(E_{h b}^{r}, z:=v\right)
\end{aligned}
$$

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number. A vector clock maps a thread id to a clock.

In Djit ${ }^{+}$and FastTrack, each thread u has a vector clock C_{u},

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number. A vector clock maps a thread id to a clock.

In Djit ${ }^{+}$and FastTrack, each thread u has a vector clock C_{u}, where it keeps:

- its own time,

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number. A vector clock maps a thread id to a clock.

In Djit ${ }^{+}$and FastTrack, each thread u has a vector clock C_{u}, where it keeps:

- its own time,
- the time of the most recent operation by v known to u.

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number. A vector clock maps a thread id to a clock.

In Djit ${ }^{+}$and FastTrack, each thread u has a vector clock C_{u}, where it keeps:

- its own time,
- the time of the most recent operation by v known to u.

$$
C_{u}
$$

Vector clocks, Djit,+ and FastTrack.

Think of a clock as natural number. A vector clock maps a thread id to a clock.

In Djit ${ }^{+}$and FastTrack, each thread u has a vector clock C_{u}, where it keeps:

- its own time,
- the time of the most recent operation by v known to u.

$$
C_{u}(v)
$$

Complexity analysis

Memory per thread

Djit ${ }^{+}$
FastTrack

Our approach

Complexity analysis

$$
\begin{array}{cc}
\begin{array}{c}
\text { Djit }^{+} \\
\text {FastTrack }
\end{array} & \text { Our approach } \\
O(\tau) & O(\nu \tau)
\end{array}
$$

τ number of threads
ν number of variables

Complexity analysis

Djit ${ }^{+}$

FastTrack
Our approach
worst-case
$O(\tau)$
$O(\nu \tau)$
$O(1)$
τ number of threads
ν number of variables

Complexity analysis

$$
\begin{array}{ccc}
\text { per thread } & \begin{array}{c}
\mathrm{Djit}^{+} \\
\text {FastTrack }
\end{array} & \text { Our approach } \\
\text { worst-case } & O(\tau) & O(\nu \tau) \\
\text { best-case } & O(1) & O(1)
\end{array}
$$

τ number of threads
ν number of variables

Comparison with TSan.

Also in the paper

Rules for

- synchronous communication
- dynamic channel and thread creation
- data-race reporting, etc

Connection with trace theory

Summary

Summary

Data-race detection in terms of channel communication

Summary

Data-race detection in terms of channel communication

- message passing as synchronization primitive

Summary

Data-race detection in terms of channel communication

- message passing as synchronization primitive
- no vector-clocks; based directly on happens-before relation

Summary

Data-race detection in terms of channel communication

- message passing as synchronization primitive
- no vector-clocks; based directly on happens-before relation
- most recent write, most recent reads, garbage collection

Summary

Data-race detection in terms of channel communication

- message passing as synchronization primitive
- no vector-clocks; based directly on happens-before relation
- most recent write, most recent reads, garbage collection
- models happens-before as described by the Go memory model

Future work

Future work

- Implementation

Future work

- Implementation
- Proof of "minimality of information"

Future work

- Implementation
- Proof of "minimality of information"

Least amount of event information that must be kept Largest amount of information that can be garbage collected

Future work

- Implementation
- Proof of "minimality of information"

Least amount of event information that must be kept Largest amount of information that can be garbage collected

Future work

- Implementation
- Proof of "minimality of information"

Least amount of event information that must be kept Largest amount of information that can be garbage collected

Questions?

References

- Go memory model (2014). The Go memory model. https://golang.org/ref/mem. Version of May 31, 2014, covering Go version 1.9.1
- Fava, D. and Steffen, M. (2019). Ready, set, Go! Data-race detection and the Go language.
To appear in the pre-proceedings of the Brazilian Symposium on Formal Methods (SBMF).
http://arxiv.org/abs/1910.12643

References

- Fava, D., Steffen, M., and Stolz, V. (2018b). Operational semantics of a weak memory model with channel synchronization.
Journal of Logic and Algebraic Methods in Programming. An extended version of the FM'18 publication with the same title
- Fava, D., Steffen, M., and Stolz, V. (2018a). Operational semantics of a weak memory model with channel synchronization.
In Havelund, K., Peleska, J., Roscoe, B., and de Vink, E., editors, FM, volume 10951 of Lecture Notes in Computer Science, pages 1-19. Springer Verlag
- French, R. Gopher figure by Renee French. https://blog.golang.org/gopher

